Space-Charge Induced Transport Limits in Periodic Quadrupole Focusing Channels*

S.M. Lund^{1,2}

J.J. Barnard^{1,2}, B. Bukh^{2,3}, S.R. Chawla^{2,3}, S.H. Chilton^{2,3}

¹Lawrence Livermore National Laboratory (LLNL)

²Lawrence Berkeley National Laboratory (LBNL)

³University of California at Berkeley

2008 Linear Accelerator ConferenceVictoria, British Columbia, Canada29 September - 3 October, 2008

^{*} Research supported by the US Dept. of Energy at LLNL and LBNL under contract Nos. DE-AC52-07NA27344 and DE-AC03-76SF0098

Overview: Machine Operating Points

Good transport of an unbunched, single component ion beam with intense space-charge requires hierarchy conditions:

C1. Lowest Order:

Stable centroid <=> single-particle orbit

C2. Next Order:

Stable 2nd order moment description <=> rms envelope equation

C3. Higher Order:

"Stable" within Vlasov-Poisson model

Vlasov stability practically defined with respect to limiting statistical (rms) emittance growth and particle losses for an initial distribution that is both *relatively smooth* and *plane equilibrated*. Stability realized by suppressing:

- Collective modes internal to the beam becoming unstable and growing
- Excessive halo generated
 - including nonlinear waves evolving well outside core
- Combined processes above

Stability analyzed for a coasting beam in a periodic FODO quadrupole lattice with a piecewise constant focusing function

• Stability results insensitive to fringe field structure and occupancy η C1: First stability condition of stable centroid (single particle orbit) satisfied for any periodic lattice when:

$$\sigma_0 < 180^{\circ}/\text{Lattice Period}$$

 σ_0 = single particle phase advance in the applied focusing field

Mark regions in parameter-space where transport limits result

Use depressed and undepressed phase-advance parameters:

 σ_0 = particle phase advance in applied focusing field

 σ = particle phase advance including applied focus + space-charge

- Also other parameter (e.g. lattice period L_p and focusing occupancy η)
- Little dependence on other parameters found for quadrupole transport limits

To measure relative strength of space-charge we employ the ratio of particle phase-advances in presence/absence of space-charge σ/σ_0

x-plane orbits in beam $(\sigma/\sigma_0 = 0.1)$:

Black - Depressed $\sigma = 9^{\circ}$ with rms equiv beam space-charge

Red - Undepressed $\sigma_0 = 90^{\circ}$ applied focusing only

Intensity

No Space-Charge Intensity

C2: 2nd order moment instabilities described by the rms envelope equations are well understood and must be avoided for reliable quadrupole transport

- rms envelope eqs + const emittances reliable predictor of moment instabilities
- For periodic quadrupole channels, "breathing" and "quadrupole" modes merge to form a "confluent" resonance band of instability

In the SBTE experiment at LBNL:

C3: Higher order Vlasov instability with strong emittance growth/particle losses observed in broad parametric region below envelope band

Results summarized by $\sigma_0 \lesssim 85^{\circ}$ for strong space-charge

- Reliably applied design criterion in the lab
- ◆ Limited theory understanding for 20+ years; Haber, Laslett simulations supported

Self consistent Vlasov stability simulations were carried out to better quantify characteristics of instability

- Carried out using the WARP PIC code from LLNL/LBNL
- High resolution/stat 2D x-y slice simulations time-advanced to s-plane
- Non-singular, rms matched distributions loaded:
 - semi-Gaussian
 - Continuous focusing equilibrium f(H) with self-consistent space-charge transformed to alternating-gradient symmetry:

waterbag
parabolic
Gaussian/Thermal

More details:

Lund, Kikuchi, Davidson, "Generation of initial distributions for simulations with high space-charge intensity," *PRSTAB* submitted

Singular KV also loaded - only to check instability resolutions

Parametric simulations of non-singular, initially rms matched distributions have little emittance evolution outside of instability regions experimentally observed Example: initial thermal equilibrium distribution

- ◆ Density along *x* and *y*-axes for 5 periods
- ◆ Emittance growth very small -- 5 period initial transient shown

Parametric simulations find broad instability region to the left of the envelope band -- features relatively insensitive to the form of the (non-singular) matched initial distribution

• Where unstable, growth becomes larger and faster with increasing σ_0

Example Parameters: $\sigma_0 = 110^{\circ}$, $\sigma/\sigma_0 = 0.2$ ($L_p = 0.5$ m, $\eta = 0.5$) 4.0 σ/σ_0 Plane Average Emittance Growth X-X3.5 180 σ_0 0 3.0 2.5 х-у *Initial Distribution: 2.0 Semi-Gaussian Waterbag 1.5 **Thermal** 1.0 10 20 30 40 Lattice Periods

Essential instability feature -- particles evolve outside core of the beam precludes pure "internal mode" description of instability

Instantaneous, rms equivalent measure of beam core:

$$r_x = 2\langle x^2 \rangle_{\perp}^{1/2}$$
$$r_y = 2\langle y^2 \rangle_{\perp}^{1/2}$$

"tag" particles that evolve outside core at any *s* in simulation

Self-consistent Poincare plots generated show large oscillation amplitude particles have halo-like resonant structure -- qualitative features relatively insensitive to the initial distribution

Lattice period Poincare strobe

 $\sigma_0 = 110^{\circ} \quad \sigma/\sigma_0 = 0.2$

Semi-Gaussian

x-x' Poincare Plot: $s/L_p = [2.25, 19.25]$, strobe = 1.00 Scaled x

Thermal Equilibrium

- ◆ Particles evolving along *x*-axis particles accumulated to generate clearer picture
 - Including off axis particles does *not* change basic conclusions

Extensive simulations carried out to better understand the parametric region of strong emittance growth

- ◆ All simulations advanced 6 undepressed betatron periods
 - Enough to resolve transition boundary: transition growth can be larger if run longer
- Strong growth regions of initial distributions all similar (threshold can vary)
 - Irregular grid contouring with ~200 simulations (dots) thoroughly probe instabilities initial semi-Gaussian initial Waterbag
 - Initial thermal/Gaussian almost identical

 Initial KV similar with extra unstable internal modes deep in stable region

Motivated by simulation results -- explore "halo"-like mechanisms to explain observed space-charge induced limits to quadrupole transport

- Resonances can be *strong*: driven by matched envelope flutter and strong space-charge
- *▶ Not* tenuous halo:

Near edge particles can easily evolve outside core due to:

- Lack of equilibrium in core
- Collective waves
- Focusing errors,

Most particles in beam core oscillate near edge

◆ Langiel first attempted to apply halo mechanism to space-charge limits Langiel, *Nuc. Instr. Meth. A* **345**, 405 (1994)

Appears to concluded overly restrictive stability criterion: $\sigma_0 < 60^{\circ}$

▶ Refine analysis: examine halo properties of particles launched just outside the rms equivalent beam core and analyze in variables to reduce "flutter" Lund and Chawla, Nuc. Instr. Meth. A 561, 203 (2006)

Lund, Barnard, Bukh, Chawla, and Chilton, Nuc. Instr. Meth. A 577, 173 (2007)

Core-Particle Model -- Transverse particle equations of motion applied for a test particle moving inside and outside a uniform density elliptical beam envelope

KV envelope equation solved for evolution of beam edge

$$r''_x + \kappa_x r_x - \frac{2Q}{r_x + r_y} - \frac{\varepsilon_x^2}{r_x^3} = 0$$

$$r''_y + \kappa_y r_y - \frac{2Q}{r_x + r_y} - \frac{\varepsilon_y^2}{r_y^3} = 0$$

$$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^2 \beta_b^2 c^2} = \text{dimensionless perveance}$$

$$r_y'' + \kappa_y r_y - \frac{2Q}{r_x + r_y} - \frac{\varepsilon_y^2}{r_y^3} = 0$$

$$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^2 \beta_b^2 c^2} = \text{dimensionless perveance}$$

Particles oscillating outside the beam envelope experience amplitude varying nonlinear forces that scale with spacecharge intensity

◆ Nonlinear force transition at beam edge larger for strong space-charge

For quadrupole transport, relative matched beam envelope excursions increase with applied focusing strength

Larger edge flutter increases nonlinearity acting on particles evolving outside the core

$$\overline{r_x} = \int_0^{L_p} \frac{ds}{L_p} r_x(s)$$
 $\eta = 0.5 \quad L_p = 0.5 \text{ m}$
 $Q = 5 \times 10^{-4}$
 $\varepsilon_x = \varepsilon_y = 50 \text{ mm-mrad}$
 $\begin{array}{c|c} \sigma_0 & \sigma/\sigma_0 \\ \hline 45^\circ & 0.20 \\ \hline 80^\circ & 0.26 \\ \hline 110^\circ & 0.32 \end{array}$

Space-charge nonlinear forces and *matched* envelope flutter strongly drive resonances for particles evolving outside of beam edge

Core-particle simulations: Poincare phase-space plots illustrate stability regions where near edge particles grow in oscillation amplitude: launch [1.1,1.2]x core

Core-particle simulations: Amplitude pumping of characteristic "unstable" phase-space structures is typically rapid and saturates whereas stable cases experience little or no growth

Contours of max particle amplitudes in core particle model suggest stability regions consistent with self-consistent simulations and experiment

Max amplitudes achieved for particles launched [1.05,1.1] times the core radius:

Note: consistent with PIC results, instability well above envelope band not found

Conclusions

High-order space-charge related emittance growth has long been observed in intense beam transport in quadrupole focusing channels with $\sigma_0 \gtrsim 85^{\circ}$:

- ◆ SBTE Experiment at LBNL [M.G. Tiefenback, Ph.D Thesis, UC Berkeley (1986)]
- Simulations by Haber, Laslett, and others

A core-particle model has been developed that suggests these space-charge transport limits result from a strong halo-like mechanism:

- Space-Charge and Envelope Flutter driven
- ❖ Results in large oscillation amplitude growth -- strongly chaotic resonance chain which limits at large amplitude rapidly increases oscillations of particles just outside of the beam edge
- ◆ Not weak: many particles participate -- Lack of core equilibrium provides pump of significant numbers of particles evolving sufficiently outside the beam edge
- Strong statistical emittance growth and lost particles (with aperture)

Mechanism consistent with other features observed:

- ◆ Stronger with envelope mismatch: consistent with mismatched beams more unstable
- ◆ Weak for high occupancy solenoid transport: less envelope flutter suppresses

More Details -- Group work on topic:

Overview: simulations and core-particle results

Lund and Chawla, "Space-charge transport limits of ion beams in periodic quadrupole focusing channels," *Nuc. Instr. Meth. A* **561**, 203 (2006)

Core particle model details: Analysis to periodic quadrupole and solenoid transport

Lund, Barnard, Bukh, Chawla, and Chilton, "A core-particle model for periodically focused ion beams with intense space-charge," *Nuc. Instr. Meth. A* **577**, 173 (2007)

Simulation loads: extensive review including adapted initial beam loads

Lund, Kikuchi, and Davidson, "Generation of intial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity," submitted to *PRSTAB*

Envelope stability: extensive review

Lund and Bukh, "Stability properties of the transverse envelope equations describing intense ion beam transport," PRSTAB 7, 024801 (2004)

Core-Particle Model -- Transverse particle equations of motion for a test particle moving inside and outside a uniform density elliptical beam envelope

$$x'' + \kappa_x x = \frac{2QF_x}{(r_x + r_y)r_x} x$$
$$y'' + \kappa_y y = \frac{2QF_y}{(r_x + r_y)r_y} y$$

$$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^2\beta_b^2c^2} \quad \quad \text{dimensionless perveance}$$

Where: inside the beam

$$F_x = 1$$

$$F_y = 1$$

with

outside the beam:

$$F_x = (r_x + r_y) \frac{r_x}{x} Re[\tilde{S}]$$

$$F_y = -(r_x + r_y)\frac{r_y}{y}Im[\tilde{S}]$$

$$ilde{S} \equiv rac{ ilde{z}}{r_x^2 - r_y^2} [1 - \sqrt{1 - rac{(r_x^2 - r_y^2)}{ ilde{z}^2}}] \qquad \qquad ilde{z} = x + iy$$

$$= rac{1}{2 ilde{z}} \left[1 + rac{1}{2} rac{r_x^2 - r_y^2}{ ilde{z}^2} + rac{1}{8} rac{(r_x^2 - r_y^2)^2}{ ilde{z}^4} + \cdots
ight]$$

Particles oscillating radially outside the beam envelope experience amplitude varying nonlinear forces that scale with space-charge intensity and can drive strong resonances

Continuous Focusing Axisymmetric Beam Radial Force

Nonlinear force transition at beam edge larger for strong space-charge

For quadrupole transport, matched beam envelope excursions increase with applied focusing strength -- larger matched edge flutter increases nonlinearity acting on particles evolving outside the core

Envelope edge (r_x) flutter scaling for a FODO channel:

$$\overline{r_x} = \int_0^{L_p} \frac{ds}{L_p} r_x(s)$$

$$\eta = 0.5 \ L_p = 0.5 \text{ m}$$

$$Q = 5 \times 10^{-4}$$

$$\varepsilon_x = \varepsilon_y = 50 \text{ mm-mrad}$$

σ_0	σ/σ_0
45°	0.20
80°	0.26
110°	0.32

Core-particle simulations: Poincare plots illustrate resonances associated with higher-order halo production near the beam edge for FODO quadrupole transport

- High order resonances near the core are strongly expressed
- Resonances stronger for higher σ_0 and stronger space-charge
- Can overlap and break-up (strong chaotic transition) allowing particles launched near the core to rapidly increase in oscillation amplitude

Lattice Period Poincare Strobe, particles launched [1.1,1.2] times core radius

